3M3M VHB TapeAdhesivesAnti-Static PackagingBags: Bin LinersBags: Dri-Shield Moisture Barrier BagsBags: Static Shield, Transparent MetallicBags: US Postal Approved MailingBESTPACKBetterpack Tape MachinesBin BoxesBoxes: CorrugatedBoxes: GaylordBoxes: PackagingBoxes: ShippingBoxes: StockBubble Mailer: Kraft Self-SealableBubble WrapBulk Cargo ContainersCarton ErectorsCarton SealersChemotherapy BagsChipboard CartonsContainers: Bulk ContainersCorrugated MailersCorrugated PackagingCorrugated PadsEdge ProtectorsFilm: Construction and AgriculturalFlo-Pack Loose FillFoam RollsFoam SheetsGlue Dots & DispensersGoodwrappersHazardous Shipping ContainersIce-Brix Cold PacksIndustrial ProductsInstapak Quick FoamJanitorialKorrvu PackagingKraft PaperLabelsMailing BagsMailing EnvelopesMarshMarsh Tape Machines and SuppliesMedical BagsMinigripOrionPackaging ProductsPacking List EnvelopesPoly BagsPoly Bags: ReclosablePoly FilmsPoly TubingPoly: Mini-Grip ProductsRubbermaidSafety ProductsShipping Room SuppliesShrink FilmShrink Film: Reynolon 5044 PVCSpecimen BagsStaplers & StaplesSTAT TearZone BagsStatic & Moisture ControlStencils & SuppliesStorage ContainersStrappingStretch FilmStretch Film MachineryStretch Film: GoodwrappersTagsTapeTape MachinesTearZone Specimen Transport BagsThermal LabelsThermal Transfer RibbonTies & FastenersTubesTyvekVCIVersa-Pak Cellulose WaddingWarehouse Supplies
packaging products
[ 1 2 3 4 5 6 7 8 9 10 ]
3M™ VHB™ Tapes

3M™ VHB™ Tapes

Design and Tape Selection Considerations

Choose the right tape for the substrate: Adhesives must flow onto the substrate surfaces in order to achieve intimate
contact area and allow the molecular force of attraction to develop. The degree of flow of the adhesive on the substrate
is largely determined by the surface energy of the substrate.

Adhesive Adhesive
High surface energy
- Substrate
Low surface energy
- Substrate

This illustration demonstrates the effect of surface energy on adhesive interfacial contact. High surface energy
materials draw the adhesive closer for high bond strength.

Relationship of Adhesion and Surface Energy for 3MT VHBT Tape Adhesive Families

Estimate of % of Maximum
3MT VHBT Tape Adhesion

NOTE: Low surface energy

100%

adhesive may be less
affected by surface energy.

NOTE: Foam type can
affect and/or limit maximum
adheisve strength.

50%

0%

HIGH LO WMEDIUM
Surface Energy (Dynes/cm)
Modified AcrylicMulti-Purpose AdhesiveGeneral Purpose AdhesiveLow Temperature Adhesive
400-1100 42-50 38-39 36-37 18-33
Aluminum KaptonT ABS PVA EVA
Stainless Steel
Copper
Zinc
Phenolic
NylonT
Alkyd Enamel
Polycarbonate (LexanT)
PVC
NorylT
Polystyrene
Acetal
Powder Paint
Polyethylene
Polypropylene
TedlarT
Tin Polyester Acrylic Silicone
Lead Epoxy Paint PolaneT Paint TeflonT
Anodized Aluminum Polyurethane Powder Paint

Glass

NOTES: There are a wide variety of formulations, surfaces finishes and surface treatments available on substrate materials which can affect adhesion. This chart is intended

to provide only a rough estimate of the adhesion levels which can be expected on some common materials relative to a reference surface such as aluminum.

Light surface abrasion will significantly increase adhesion levels on many materials, except when using tapes 4952/4932.

Use the right tape thickness: The necessary thickness of tape depends on the rigidity of substrates and their flatness
irregularity. While the 3MT VHBT Tapes will conform to a certain amount of irregularity, they will not flow to fill
gaps between the materials. For bonding rigid materials with normal flatness, consider use of tapes with thickness of 45
mils (1.1 mm) or greater. As the substrate flexibility increases thinner tapes can be considered.

Use the right amount of tape: Because 3MT VHBT Tapes are viscoelastic by nature their strength and stiffness is a
function of the rate at which they are stressed. They behave stronger with relatively faster rate of stress load (dynamic
stresses) and will tend to show creep behavior with stress load acting over a long period of time (static stresses). As a
general rule, for static loads, approximately four square inches of tape should be used for each pound of weight to be
supported in order to prevent excessive creep. For dynamic loads, the dynamic performance characteristics provided on
page 4 should be useful, factoring in the appropriate safety factors.

Allow for thermal expansion/contraction: 3MT VHBT Tapes can perform well in applications where two bonded
surfaces may expand and contract differentially. Assuming good adhesion to the substrates, the tapes can typically
tolerate differential movement in the shear plane up to 3 times their thickness.

Bond Flexibility: While an advantage for many applications where allowing differential movement is a benefit, the
tape bonds are typically more flexible than alternate bonding methods. Suitable design modifications or periodic use of
rigid fasteners or adhesives may be needed if additional stiffness is required.

Severe Cold Temperature: Applications which require performance at severe cold temperatures must be thoroughly
evaluated by the user if the intended use will subject the tape product to high impact stresses. A technical bulletin
"3M™ VHB™ Tape Cold Temperature Performance" is available for additional information. (70-0707-3991-0)

Poly Films   Corrugated Packaging   Versa-Pak Cellulose Wadding   Carton Erectors   TearZone Specimen Transport 
    Bags
Copyright © 2008 PackagingProductsOnline.com
design & programming by DCitc